|
УЛЬТРАЗВУКОВЫЕ ДАТЧИКИДля проведения бесконтактных измерений можно разработать активный датчик, который бы мог одновременно и передавать эталонный сигнал, и принимать отраженный от объекта сигнал. Передаваться энергия может в виде любого излучения — к примеру, через электромагнитные волны оптического (как в ПЧД) или микроволнового диапазонов, через акустические волны и т.д. Принцип передачи и приема ультразвуковой энергии лежит в основе очень популярных ультразвуковых сенсоров и детекторов скорости. ультразвуковые волны являются механическими акустическими волнами, частота которых лежит за пределами слышимости человеческого уха — более 20 кГц. Однако сигналы этих частот воспринимаются некоторыми животными: собаками, кошками, грызунами и насекомыми. А некоторые виды млекопитающих, таких как летучие мыши и дельфины, общаются друг с другом ультразвуковыми сигналами. При столкновении любых волн с объектом часть их энергии отражается. В случае ультразвуковых волн отраженная энергия рассеивается в пространстве. Это означает, что вне зависимости от направления падающего луча, все отраженные лучи почти равномерно распределяются внутри широкого пространственного угла, который может достигать значения 180°. При движении объекта частота отраженных волн не совпадает с частотой излучаемых волн. Это и есть так называемый эффект Доплера. Этот эффект характерен для волн любой природы, в том числе и ультразвуковых). Если излучатель и приемник расположены недалеко друг от друга по сравнению с расстоянием до объекта, cos#=l. Очевидное преимущество ультразвуковых волн над волнами микроволнового диапазона заключается в том, что они распространяются со скоростями, которые намного меньше скорости света, характерной для СВЧ-волн. Поэтому интервал t для них гораздо длиннее, что упрощает его измерение, и, следовательно, снижает стоимость устройств.![]() Для генерации любых механических волн, включая ультразвуковые, требуется организовать обратно поступательное движение поверхности, при котором создаются зоны разряжения и сжатия рабочей среды: газовой (воздушной), жидкостной. Для возбуждения ультразвуковых волн чаще всего применяются пьезоэлектрические преобразователи, работающие в так называемом моторном режиме. Это название указывает на то, что в данном режиме пьезоэлектрические устройства напрямую преобразуют электрическую энергию в механическую. На рис. 7.40А отображено, что входное напряжение, приложенное к пьезокера-мическому элементу заставляет его изгибаться, возбуждая тем самым ультразвуковые волны. Поскольку пьезоэлектричество является обратимым эффектом, воздействие ультразвуковых волн на тот же керамический элемент приводит к появлению на его поверхности электрических зарядов. Другими словами, элемент может работать и как излучатель, и как приемник (микрофон). Типичная рабочая частота излучающего пьезоэлемента составляет около 32 кГц. Для повышения эффективности частота задающего генератора должна быть равна резонансной частоте/г керамического элемента (рис. 7.39Б). При соблюдении этого условия удается реализовать лучшую чувствительность и эффективность элемента. При работе схемы в импульсном режиме для передачи и приема сигнала можно использовать один и тот же пьезопреобразователь. При непрерывном режиме работы необходимы два пьезоэлемента. На рис. 7.40Б отображена типовая схема ультразвукового датчика перемещений, работающего в воздушной среде, а на рис. 7.41 А — его внешний вид. Часто на практике важно знать диаграмму направленности датчика, которая имеет вид, изображенный на рис. 7.41 Б. Чем уже диаграмма, тем выше чувствительность преобразователя. ![]() ![]() .
Информация исключительно в ознакомительных целях. При использовании материалов этого сайта ссылка обязательна.Правообладатели статей являются их правообладателями. |
По вопросам размещения статей пишите на email:
|