|
ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИИными словами, у таких сенсоров нет необходимости определять динамические характеристики. Дифференциальные уравнения первого порядка описывают поведение сенсоров, в состав которых входит один энергонакопительный элемент. Типичный пример датчика первого порядка — датчик температуры, в котором роль энергонакопительного элемента играет теплоемкость. В стационарных условиях датчик полностью описывается своей передаточной функцией, диапазоном измеряемых значений, калибровочными коэффициентами и т.д. Однако на практике выходной сигнал датчика не всегда достаточно точно отслеживает изменение внешнего сигнала. Причины этого заключаются как в самом датчике, так и в его соединении с источником внешних воздействий, не позволяющем сигналам распространяться с бесконечно большой скоростью Другими словами можно сказать, что любой датчик обладает параметрами, зависящими от времени, называемыми динамическими характеристиками. Если датчик имеет ограниченное быстродействие, он может регистрировать значения внешних воздействий, отличающиеся от реальных. Это означает, что датчик работает с динамической погрешностью. Отличие между статическими и динамическими погрешностями заключается в том, что последние всегда зависят от времени. Если датчик входит в состав измерительного комплекса, обладающего определенными динамическими характеристиками, внесение дополнительных динамических погрешностей может привести, влучшем случае, к задержке отображения реального значения внешнего воздействия, а, в худшем случае, — к возникновению колебаний. Время разогрева — это время между подачей на датчик электрического напряжения или сигнала возбуждения и моментом, когда датчик начинает работать, обеспечивая требуемую точность измерений. Многие датчики обладают несущественным временем разогрева. Однако некоторые детекторы, особенно работающие в устройствах с контролируемой температурой (термостатах), для своего разогрева требуют секунды, а то и минуты. В теории автоматического управления (ТАУ) принято описывать взаимосвязь между входами и выходами устройства в виде линейных дифференциальных уравнений с постоянными коэффициентами. Очевидно, что при решении таких уравнений можно определить динамические характеристики устройства. В зависимости от конструкций сенсоров, уравнения, описывающие их, могут иметь разный порядок. Датчики нулевого порядка, имеющие линейную передаточную функцию (уравнение (2.1)), можно описать следующими зависимостями от времени t: S(t) = a + bs(f). Коэффициент а называется смещением, а Ь — статической чувствительностью. Из вида уравнения видно, что оно описывает датчики в состав которых не входят энергонакопительные элементы, такие как конденсаторы или массы. Датчики нулевого порядка относятся к устройствам мгновенного действия. Для описания сенсоров первого порядка существует несколько способов. Но производители сенсоров для этого чаще всего используют частотные характеристики, показывающие насколько быстро датчик может среагировать на изменение внешнего воздействия. Для отображения относительного уменьшения выходного сигнала при увеличении частоты применяется амплитудно-частотная характеристика, отображенная на рис. 2.9А. Для описания динамических характеристик сенсоров часто используется граничная частота, соответствующая 3– дБ снижению выходного сигнала, показывающая на какой частоте происходит 30% уменьшение выходного напряжения или тока. Эта граничная частота, часто называемая верхней частотой среза, считается предельной частотой работы датчика. Рис. 2.9 Частотные характеристики: А — частотная характеристика датчика первого порядка, Б — частотная характеристика датчика с ограничениями по верхней и нижней частоте среза, где то и xL — соответствующие постоянные времени Частотные характеристики напрямую связаны с быстродействием датчика, выражаемого в единицах внешнего воздействия на единицу времени. Какие характеристики: АЧХ или быстродействие, используются для описания датчика, зависит от его типа, области применения и предпочтений разработчика. Другой способ описания быстродействия заключается в определении времени, требуемого для достижения выходным сигналом датчика уровня 90% от стационарного или максимального значения при подаче на его вход ступенчатого внешнего воздействия. Для сенсоров первого порядка очень удобно использовать параметр, называемый постоянной времени. Постоянная времени т является мерой инерционности датчика. В терминах электрических величин она равна произведению емкости на сопротивление: г = CR. В тепловых терминах под С и Л понимаются теплоемкость и тепловое сопротивление. Как правило, постоянная времени довольно легко измеряется. Временная зависимость системы первого порядка имеет вид: где S — установившееся значение выходного сигнала, / — время, а е — основание натурального логарифма. Заменяя г на т, получаем: Другими словами можно сказать, что по истечении времени, равного постоянной времени, выходной сигнал датчика достигает уровня, составляющего приблизительно 63% от установившегося значения. Аналогично можно показать, что по истечении времени, равного двум постоянным времени, уровень выходного сигнала составит 86.5%, а после трех постоянных времени — 95%. Частота среза характеризует наименьшую или наибольшую частоту внешних воздействий, которую датчик может воспринять без искажений. Верхняя частота среза показывает насколько быстро датчик реагирует на внешнее воздействие, а нижняя частота среза — с каким самым медленным сигналом он может работать. На рис.2.9Б отображена характеристика датчика, который имеет ограничения как по верхней, так и по нижней частоте среза. На практике для установления связи между постоянной времени датчика первого порядка и его частотой среза, как верхней так и нижней, используют простую формулу. Фазовый сдвиг на определенной частоте показывает насколько выходной сигнал отстает от внешнего воздействия (рис. 2.9А). Сдвиг измеряется либо в градусах, либо в радианах и обычно указывается для сенсоров, работающих с периодическими сигналами. Если датчик входит в состав измерительной системы с обратными связями, всегда необходимо знать его фазовые характеристики. Фазовый сдвиг датчика может снизить запас по фазе всей системы в целом и привести к возникновению нестабильности. Примером датчика второго порядка является акселерометр, в состав того входит масса и пружина. На выходах сенсоров второго порядка после подачи на их входы ступенчатого воздействия практически всегда появляются колебания. Эти колебания могут быть очень кратковременными, тогда говорят, что датчик демпфирован, или они могут длиться продолжительное время, а то и постоянно. Продолжительные колебания на выходе датчика являются свидетельством его неправильной работы, поэтому их надо стараться избегать. Любой датчик второго порядка характеризуется резонансной (собственной) частотой, которая выражается в герцах или радианах в секунду. На собственной частоте происходит значительное увеличение выходного сигнала датчика. Обычно производители указывают значение собственной частоты датчика и его коэффициент затухания (демпфирования). От резонансной частоты зависят механические, тепловые и электрические свойства детекторов. Обычно рабочий частотный диапазон сенсоров выбирается либо значительно ниже собственной частоты (по крайней мере на 60%), либо выше ее. Однако для некоторых типов сенсоров резонансная частота является рабочей. к примеру, детекторы разрушения стекла, используемые в охранных системах, настраиваются на узкую полосу частот в зоне частоты резонанса, характерную для акустического спектра, производимого разбивающимся стеклом. Демпфирование — это значительное снижение или подавление колебаний в датчиках второго и более высоких порядков. Когда выходной сигнал устанавливается достаточно быстро и не выходит за пределы стационарного значения, говорят, что система обладает критическим затуханием, а ее коэффициент демпфирования равен 1 (рис. 2.10). Когда коэффициент затухания меньше 1, и выходной сигнал превышает установившееся значение, говорят, что система недодемфирована. А когда коэффициент затухания больше 1, и сигнал устанавливается гораздо медленнее, чем в системе с критическим затуханием, говорят, что система передемпфирована. Рис. 2.10 Виды выходных сигналов в датчиках с разным коэффициентом демпфирования Для колебательного выходного сигнала, отображенного на рис. 2.10, коэффициент затухания или демпфирования определяется абсолютным значением отношения большей амплитуды к меньшей пары последовательно взятых полуволн колебаний относительно установившегося значения, т.е. можно записать: На рис. 2.11 приведены возможные варианты выходных сигналов сенсоров в ответ на ступенчатое внешнее воздействие. Рис. 2.11 Варианты выходных сигналов: А — бесконечные верхняя и нижние частоты, В — система первого порядка с ограниченной верхней частотой среза, С — система первого порядка с ограниченной нижней частотой среза, D — система первого порядка с ограниченными верхней и нижней частотами среза, Е — система с узкой полосой частот (резонансная система), F — широкополосная система с резонансом..
Информация исключительно в ознакомительных целях. При использовании материалов этого сайта ссылка обязательна.Правообладатели статей являются их правообладателями. |
По вопросам размещения статей пишите на email:
|