|
ТЕРМИСТОРЫДля определения сопротивления термистор включается в измерительную цепь, по изменению тока в той и судят о величине сопротивления. В зависимости от заданного уровня точности и стоимости калибровка термистора может проводиться на основе одной из известных аппроксимационных моделей. При использовании термистора в качестве датчика абсолютной температуры предполагается, что при прохождении через него электрического тока, его собственная температура не изменится, что означает, что он не внесет в систему значительных тепловых возмущений, способных повлиять на точность измерений. В этом случае говорят, что термистор обладает «нулевой мощностью».Далее будет отображено, как эффект саморазогрева сказывается на величине сопротивления терморезистора, но пока будем считать, что он приводит к появлению лишь незначительных погрешностей. При использовании термисторов в каких-либо измерительных системах необходимо знать их передаточные функции, которые являются аналитическими выражениями, связывающими величину сопротивления и температуру. Для описания передаточной функции термисторов были предложены несколько математических моделей. рекомендуется отметить, что все математические модели являются только аппроксимациями, и, как правило, чем проще модель, тем ниже ее точность. С другой стороны, при использовании более сложных моделей значительно усложняется калибровка термисторов. Все существующие модели термисторов построены на экспериментально доказанном факте, что логарифм сопротивления термистора связан с его абсолютной температурой следующей полиноминальной зависимостью: Термисторы с положительным температурным коэффициентом Все металлы относятся к материалам с положительным температурным коэффициентом (ПТК). Из соответствующей таблицы Приложения видно, что все они обладают низкими значениями температурных коэффициентов сопротивления (ТКС). РДТ, описанные ранее, также имеют небольшой ПТК. В отличие от них многие керамические материалы в определенном температурном диапазоне обладают довольно значительными ПТК. термисторы с ПТК обычно изготавливаются на базе поликристаллических керамических материалов, основные компоненты которых (титанат бария или твердые растворы титаната бария и стронция), обладающие высоким удельным сопротивлением, легируются дополнительными примесями для придания им свойств полупроводников [8]. При температурах, превышающих точку Кюри композиционных материалов, их ферроэлектрические свойства меняются очень быстро, что приводит к значительному увеличению сопротивления, иногда на несколько порядков. На рис. 16.12 отображены передаточные характеристики для трех типов температурных детекторов: с ОТК, ПТК и РДТ. Как видно из рисунка, для термисторов с ПТК очень сложно подобрать математическую аппроксимацию, поэтому для них в документации обычно приводятся следующие характеристики: 1. Сопротивление при нулевой приложенной мощности, R25. При этом значении влияние эффекта саморазогрева незначительно. 2. Минимальное сопротивление Rm, при котором термистор меняет знак своего температурного коэффициента (точка т) 3. Температура перехода Tt, начиная с той начинается быстрое изменение сопротивления. Она приблизительно совпадает с точкой Кюри материала. Значения температуры перехода обычно лежат в интервале — 30...+160°С (Keystone Carbon Co.) Этот коэффициент сильно зависит от температуры и часто определяется в точке х (т.е. там, где он обладает максимальным значением). Он может достигать значений 2/°С, что означает 200% изменение сопротивления на °С. 4. Максимальное напряжение Ет, соответствующее предельно допустимому значению, выдерживаемому термистором. 5. Тепловые характеристики: теплоемкость, коэффициент рассеяния 8 (определенный для заданных условий связи детектора с окружающей средой) и тепловая постоянная времени (характеризующая быстродействие термистора при определенных условиях) ![]() Термисторы с отрицательным температурным коэффициентом сопротивления Обычные металоксидные термисторы обладают ОТК. Это значит, что при увеличении температуры их сопротивление падает. Сопротивление термисторов с ОТК, также как и любых других резисторов, определяется их физическими величиными и удельным сопротивлением материала. Зависимость между величиной сопротивления и температурой является сильно нелинейной. При проведении прецизионных измерений или при работе в широком температурном диапазоне нельзя напрямую использовать характеристики термисторов, приведенные в документации на них, поскольку типовые допуски на номинальные значения серийно выпускаемых изделий при температуре 25°С составляют порядка ±20%. Поэтому для достижения высокой точности измерений термисторы необходимо индивидуально калибровать в широком температурном диапазоне. Правда, существуют и прецизионные термисторы, характеристики которых в заводских условиях подгоняются методом шлифовки до требуемых размеров. Этот процесс проводится под непрерывным контролем за номинальными значениями сопротивлений при заданной температуре. Однако такая процедура настройки термисторов приводит к значительному повышению их стоимости. Поэтому на практике чаще применяется метод индивидуальной калибровки термисторов. В процессе калибровки измеряется сопротивление термистора при помещении его в среду точно известной температурой (для этих целей часто применяется камера с мешалкой, в которую может быть залита вода, но чаще минеральное масло или специальный состав, к примеру, Flourent®). Если требуется многоточечная калибровка, эта процедура выполняется при разных температурах. Естественно, что качество проведенной калибровки сильно зависит от точности эталонного термометра. Из рис. 16.13 видно, что в относительно узком температурном диапазоне, термистор с ПТК обладает отрицательным сопротивлением, т.е. ![]() где 8 — коэффициент рассеяния, зависящий от теплоизоляции термистора от окружающей среды, а Г — температура окружающей среды. Рабочая точка термостата определяется физическими свойствами керамического материала (точкой Кюри). Благодаря внутренней тепловой обратной связи, устройство может работать в сравнительно широком диапазоне напряжений и окружающих температур. Естественно, что окружающая температура должна быть всегда меньше Т. 3. термисторы с ПТК из-за большой длительности переходных процессов, определяемых временем между подачей напряжения и переходом устройства в рабочее состояние, часто требует подключения схем задержки. 4. Расходомеры и детекторы уровня жидких сред, работающие на принципе детектирования теплового рассеяния, также часто реализуются на основе тер-мисторов с ПТК. ![]() .
Информация исключительно в ознакомительных целях. При использовании материалов этого сайта ссылка обязательна.Правообладатели статей являются их правообладателями. |
По вопросам размещения статей пишите на email:
|