Датчики и сенсоры

Датчики и сенсоры онлайн журнал

Практика использования, теоретические основы и современные тенденции

 

 

ПОЛУПРОВОДНИКОВЫЕ ДАТЧИКИ ТЕМПЕРАТУРЫ НА ОСНОВЕ Р-N ПЕРЕХОДА

Характеристики полупроводникового р-п перехода в диодах и биполярных транзисторах довольно сильно зависят от температуры [11]. Если прямосмещенный переход соединить с генератором постоянного тока (рис. 16.19А) (см. раздел 5.3.1 главы 5), выходное напряжение, снимаемое с него, будет прямо пропорционально изменению его температуры (рис. 16.20). Достоинством такого датчика является его линейность, что дает возможность проводить его калибровку только по двум точкам для определения наклона прямой и ее пересечения с координатной осью (наклон прямой характеризует чувствительность детектора).

НА3

Рис. 16.20. Зависимость напряжения от температуры для прямосмещенного полупроводникового перехода, снятая в условиях постоянного тока


к примеру, для кремниевого перехода, работающего при токе 10 мкА, температурная чувствительность равна — 2.3 мВ/°С, а при токе 1 мА, она падает до — 2.0 мВ/°С. Любой диод или биполярный транзистор могут быть использованы в качестве сенсоров температуры. На рис. 16.19Б отображена схема детектора температуры на базе транзистора, в той вместо источника тока используется источник напряжения и резистор R. Ток, протекающий через транзистор, можно найти из выражения:

Рекомендуется работать при токе 100 мкА. Тогда при Е = 5 В и К=0.6 В, сопротивление R = (E-V)/I = 44 кОм. При увеличении температуры напряжение Кпада—

НА4

Рис. 16.21. Зависимость погрешности измерений от температуры, построенная для датчика температуры, реализованного на основе кремниевого транзистора PN100

ет, что приводит к незначительному увеличению тока /. В соответствии с уравнением (16.47) это вызывает нето снижение чувствительности, которая выражается в появлении нелинейности. Этой нелинейностью в ряде случаев можно пренебречь, однако иногда при обработке сигналов ее приходится учитывать. Благодаря простоте и очень низкой стоимости, транзисторные (диодные) датчики температуры получили довольно широкое распространение. На рис. 16.21 отображена зависимость погрешности измерений датчика температуры, реализованного на основе транзистора PN100, от температуры при рабочем токе 100 мкА. Как видно из рисунка, погрешность измерений довольно мала, и во многих случаях можно даже обойтись без коррекции нелинейности.

Детекторы температуры на основе диодов часто встраиваются в кремниевую подложку монолитных сенсоров для осуществления температурной компенсации. к примеру, такие детекторы методом диффузии формируются на мембранах кремниевых микросенсоров давления для компенсации температурной зависимости пьезорезистивных элементов.

Напряжение на транзисторах всегда пропорционально абсолютной температуре в Кельвинах. На основе этого свойства можно реализовать недорогой, но достаточно точный датчик температуры. В этом датчике можно либо непосредственно измерять напряжение, либо предварительно преобразовать напряжение в ток, по величине того определять температуру [12]. Такой полупроводниковый датчик температуры построен на основе зависимости между напряжением база-эмиттер (VBE) и коллекторным током биполярного транзистора. На рис. 16.22А отображена упрощенная схема детектора температуры. В этом датчике транзисторы Ql и Q4 формируют, так называемое, токовое зеркало, вырабатывающее два одинаковых тока Тс=1 и /„=/, которые поступают на транзисторы Qx и Qr Величина коллекторных токов определяется сопротивлением R. В монолитной схеме транзистор Q2, как правило, состоит из нескольких идентичных транзисторов (к примеру, 8), включенных параллельно. Поэтому плотность тока в Q] будет в восемь раз больше, чем на каждом из транзисторов, входящих в состав Qr Разность напряжений база-эмиттер двух транзисторов Qx и Q2 равна:

где г-множитель тока (8 в нашем примере), к — постоянная Больцмана, q — заряд электрона, Т — температура в Кельвинах. Ток Icm одинаков для обоих транзисторов. Ток, протекающий через резистор R, создает на нем напряжение V = 179 мкВ/ К, величина того не зависит от токов на коллекторах. Исходя из этого, можно найти выражение для суммарного тока, протекающего через датчик:

НА5

При г=8 и R = 358 Ом, данный датчик обладает линейной передаточной функцией: //Г= 1 мкА/К.

НА6

Рис. 16.22. Упрощенная схема полупроводникового датчика температуры (А) и зависимости тока от напряжения (Б)

На рис. 16.22Б отображены зависимости тока от напряжения, построенные для разных температур. Отметим, что значение выражения в круглых скобках в уравнении (16.50) в данном конкретном случае является постоянной величиной и может быть точно подстроено в процессе изготовления для получения требуемого наклона. Ток легко преобразуется в напряжение. к примеру, если последовательно с датчиком включить резистор номиналом 10 кОм, напряжение на нем будет прямо пропорционально абсолютной температуре.

Работа упрощенной схемы, отображенной на рис. 16.22А, соответствует

НА7

Рис. 16.23. Типовая передаточная функция полупроводникового датчика температуры LM35DZ (Напечатано с разрешения National Semiconductors, Inc)

Поскольку таких транзисторов не бывает, в схемы, применяемые на практике, приходится вводить много дополнительных компонентов. Многие фирмы выпускают датчики температуры, реализованные на этом принципе. Среди них LM35 (National Semiconductors) — с выходом по напряжению и AD590 (Analog Devices) — с токовым выходом.

На рис. 16.23 отображена передаточная функция датчика LM35Z, чувствительность того настроена на уровень 10 мВ/°С. Погрешность нелинейности такого датчика невелика, обычно она не выходит за пределы ±0.ГС.


.

  Список тем   Назад   Вперед

 

 

Информация исключительно в ознакомительных целях. При использовании материалов этого сайта ссылка обязательна.Правообладатели статей являются их правообладателями.

 

По вопросам размещения статей   пишите на email:

datchikisensor@yandex.ru

 

 

Хостинг от uCoz